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Abstract In the Southeast Asian tropics, Arhopala ly-
caenid butterflies feed on Macaranga ant-plants inhab-
ited by Crematogaster (subgenus Decacrema) ants
tending Coccus-scale insects. A recent phylogenetic study
showed that (1) the plants and ants have been codiver-
sifying for the past 20–16 million years (Myr), and that
(2) the tripartite symbiosis was formed 9–7 Myr ago,
when the scale insects became involved in the plant–ant
mutualism. To determine when the lycaenids first para-
sitized the Macaranga tripartite symbiosis, we con-
structed a molecular phylogeny of the lycaenids that feed
onMacaranga by using mitochondrial and nuclear DNA
sequence data and estimated their divergence times based

on the cytochrome oxidase I molecular clock. The mini-
mum age of the lycaenids was estimated by the time-
calibrated phylogeny to be 2.05 Myr, about one-tenth
the age of the plant–ant association, suggesting that the
lycaenids are latecomers that associated themselves with
the pre-existing symbiosis of plant, ant, and scale insects.

Keywords Arhopala Æ Cytochrome oxidase Æ Molecular
clock Æ Myrmecophytic Macaranga Æ Southeast Asian
tropics

Introduction

Diversifying coevolution between plants and insects is
thought to be amajor factor leading to species diversity in
tropical rainforests (Ehrlich and Raven 1964), but before
the development of modern molecular phylogenetic
methods it was difficult to reconstruct plant–insect
coevolutionary history owing to a dearth of fossil records
of plant–insect interactions (Futuyma 2000). Now, by
using molecular clocks and advanced molecular phylo-
genetic techniques, we can easily estimate when adaptive
radiation and diversification of a taxonomic group oc-
curred (Rambaut and Bromham 1998). For example,
Becerra (2003) calibrated the molecular phylogenetic
timelines of NeotropicalBursera hosts and theBlepharida
leaf beetles that feed on them, and showed that the lin-
eages of these beetles and their plant hosts diverged syn-
chronously, suggesting that they reciprocally diversified
(codiversified) during the past 112 million years (Myr).

Myrmecophytic Macaranga trees (Euphorbiaceae)
have hollow stems, which Crematogaster (subgenus
Decacrema) ants use as their nest sites while tending the
Coccus scale insects that feed on the tree sap. The trees
also provide food resources for the ants, both food-
bodies secreted by stipules and young leaves, and hon-
eydew excreted by the scale insects (Fiala et al. 1989;
Heckroth et al. 1998). The ants, in turn, protect the trees
that they inhabit from vines and herbivores (Itioka et al.
2000; Itino and Itioka 2001). Phylogenetic comparison
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of Macaranga, Decacrema, and Coccus has shown that
(1) the minimum age of the plant–ant mutualism is
20–16 Myr, and the two taxa have codiversified since
then (Davies et al. 2001; Itino et al. 2001; Quek et al.
2004, 2007), and (2) the minimum age of the scale insects
is 9–7 Myr; thus, the scales are relative latecomers in the
evolutionary history of the tripartite symbiosis (Ueda
et al. 2008, 2010).

In addition, Arhopala lycaenid butterflies (amphimuta
subgroup) parasitize the protective plant–ant mutualism.
Arhopala caterpillars eat Macaranga leaves, evading the
ants’ attacks by providing nectar to aggressive ants
(Maschwitz et al. 1984). Okubo et al. (2009) surveyed the
Macaranga–Arhopala interaction, and showed that each
lycaenid feeds on one or two closely related Macaranga
species in a species-specific manner (Table 1). Of
approximately 200 species ofArhopala, only 5 species feed
on Macaranga, which are categorized to amphimuta
subgroup (Eliot 1963, 1972). Most of basal Arhopala
species prefer to eat Fagaceae whereas the most recently
diverged amphimuta subgroup has strict feeding habit to
Macaranga (Maschwitz et al. 1984; Megens et al. 2005).
The morphological and behavioral specialization of the
amphimuta subgroup to the Macaranga–Decacrema pro-
tective mutualism suggests intimate coevolution between
the lycaenids and the plants or ants, or both (Maschwitz
et al. 1984; Megens et al. 2004a, b; Megens et al. 2005).

Two hypotheses, the codiversification model (John-
son and Stinchcombe 2007) and the latecomer model
(Ueda et al. 2008), can potentially explain the commu-
nity formation process between Arhopala and the Mac-
aranga system. According to the codiversification model,
the host–parasite interaction of the lycaenids with the
Macaranga system began at the same time as the Mac-
aranga–Decacrema symbiosis (20–16 Myr ago) and the
lycaenids’ diversification occurred synchronously with
the Macaranga–Decacrema codiversification as a result
of continuous community interaction over macroevolu-
tionary time. In contrast, in the latecomer model, the
lycaenids associated with the pre-existing Macaranga
system, and the host (plant or ant) adaptation then led
to the lycaenids’ diversification. Megens et al. (2004a)
inferred that the earliest radiation of genus Arhopala

occurred between 7 and 11 Myr ago, but mentioned that
these estimates are likely to be an underestimation be-
cause of the extreme compositional bias at third-codon.
To test these hypotheses, in this study we reconstructed
the molecular phylogeny of Arhopala lycaenid butterflies
feeding on Macaranga trees by using mitochondrial and
nuclear genes to estimate the timeline of the adaptive
radiation and diversification of the lycaenids. We then
inferred the minimum age of the Arhopala–Macaranga
interaction and the timeline of the subsequent diversifi-
cation of the lycaenids.

Materials and methods

Sampling

More than 1,000 trees representing 16Macaranga species
were comprehensively surveyed for the presence of
Arhopala species in three locations (Lambir Hills Na-
tional Park and Kuching in Sarawak, Borneo, and Gu-
nung Tebu in Terengganu, Peninsula Malaysia) from
May 1999 to August 2007. Thirty-five lycaenids belong-
ing to five Arhopala species (A. amphimuta, A. dajagaka,
A. major, A. moolaiana, and A. zylda), all in the amphi-
muta subgroup, that feed on Macaranga trees (Megens
et al. 2004b, 2005), were collected from sevenMacaranga
species. Most of the lycaenid specimens analyzed here
were previously studied by Okubo et al. (2009), who
studied ecological interaction between Arhopala and
Macaranga. In addition, five sequences of the three
Arhopala species studied by Megens et al. (2004b), who
described genus-level phylogeny of Arhopala, were used
in the phylogenetic analyses (one A. amphimuta sequence
and two sequences each of A. major and A. moolaiana).
For outgroups, we sequenced (1) A. pseudocentaurus, a
member of the centaurus group, a sister clade of the
amphimuta subgroup (Megens et al. 2004b), and (2) A.
kinabala, a member of the agesias subgroup, a distant
clade from the amphimuta subgroup (Megens et al.
2004b). Host plant species, collection locations, and
GenBank accession numbers of the samples are listed in
Table S1 in the Supplementary Material.

DNA extraction, PCR, and sequencing

DNA was extracted from a single, ethanol-preserved leg
of each lycaenid with a DNeasy Blood & Tissue Kit
(Qiagen, Hilden, Germany) following the manufac-
turer’s protocols. One mitochondrial gene, cytochrome
oxidase I (COI), and two nuclear genes, wingless (WG)
and elongation factor 1a (EF-1a) were amplified by
polymerase chain reaction (PCR) using Takara Ex Taq
polymerase (Takara Bio, Shiga, Japan). The PCR
primers are given in Table S2. The PCR temperature
profile used for COI was 30 cycles of 95�C for 30 s, 50�C
for 30 s, and 72�C for 90 s, and that used for WG and
EF-1a was 30 cycles of 95�C for 30 s, 55�C for 30 s, and

Table 1 Host plant associations of Arhopala species feeding on
Macaranga

Arhopala
species

Host plant
species

References

A. amphimuta M. bancana,
M. trachyphylla

Maschwitz et al. (1984) and
Okubo et al. (2009)

A. dajagaka M. hosei Maschwitz et al. (1984)
A. major M. gigantea,

Macaranga sp. A
Okubo et al. (2009)

A. moolaiana M. hulletti Maschwitz et al. (1984)
A. zylda M. beccariana,

M. hypoleuca
Maschwitz et al. (1984) and
Okubo et al. (2009)

Macaranga sp. A would be the closest relatives to M. gigantea
(both non-myrmecophytes)
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72�C for 30 s. After amplification, the PCR products
were purified with ExoSap-IT (USB, Cleveland, OH,
USA). Cycle sequencing reactions for both strands were
performed with a BigDye Terminator v1.1 Cycle
Sequencing Kit (ABI, Weiterstadt, Germany) on an ABI
3130 Genetic Analyzer.

Sequence alignments and character statistics

Mitochondrial COI and nuclear EF-1a and WG se-
quences were edited and aligned using SeqScape v. 2.5
(ABI, Weiterstadt, Germany). Of the 45 specimens used
in this study, 38 represent unique haplo-genotypes. Base
frequency homogeneity was tested separately for each
dataset with Chi-square test using PAUP* 4.0b10
(Swofford 2002). Parsimony-uninformative sites were
excluded from the test. The Chi-square test did not reject
the hypothesis of homogeneity of nucleotide frequencies
in every pair of taxa (p > 0.69; Table S3). To test
conflicts in phylogenetic signal among each dataset, we
conducted an incongruence length differences (ILD) test
(Farris et al. 1994) in PAUP* 4.0b10 with heuristic
searches with tree bisection and reconnection (TBR) and
100 random addition replicates for each. The ILD test
revealed no conflict between each dataset (COI vs. EF-
1a = 0.75; COI vs. WG = 0.47; EF-1a vs. WG =
0.65). The degree of substitution saturation in the third
codon position was assessed by plotting the transitions
(ti) and transversions (tv) ratio against genetic distance
for each dataset using DAMBE with Xia’s method (Fig.
S1; Xia and Xie 2001). The substitution model of the
third codon position for each dataset followed as the
result of the model selections described in the next par-
agraph. The substitution saturation at the third codon
position was not detected for every dataset (p < 0.01;
Fig. S1). Following the results of the character statistics,
we used all datasets and all positions for each dataset for
phylogenetic analyses.

Phylogenetic analyses

Best-fitted substitution models were selected for each
codon position of each gene, based on Bayesian infor-
mation criterion 5 (BIC5) using KAKUSAN 3 software
(Tanabe 2007). Maximum likelihood (ML) analysis was
performed with TREEFINDER version October 2008
(Jobb et al. 2004) and the models selected by BIC5 (Table
S4). Clade support was assessed with 1000 bootstrap
replications in TREEFINDER. In addition, Bayesian
posterior probabilities and maximum parsimony (MP)
bootstrap support were obtained with MrBayes version
3.1.2 (Huelsenbeck and Ronquist 2001) and PAUP*
4.0b10 (Swofford 2002), respectively. The models se-
lected by BIC5 were also used in the Bayesian analysis,
using the default run settings in which two independent
analyses are performed with four chains each (one cold
and three heated). The Bayesian analysis was run for 5

million generations, sampling every 1,000 generations.
We assessed the log-likelihood for each sampling point
against generation time to identify when the Markov
chains reached a stationary distribution, and accordingly
discarded the initial 1,000 trees as burn-in. The parsi-
mony bootstrap support was assessed with 1,000 boot-
strap replicates, using heuristic searches with TBR and
ten random addition replicates for each.

Age estimation

Because lycaenid butterflies lack a robust fossil record
(Kandul et al. 2004), we estimated divergence times
using relative divergence rate in the COI gene and set a
calibration point on the ML phylogeny of the lycaenids.
The COI gene has been reported to have the lowest rate
heterogeneity in arthropods (Gaunt and Miles 2002),
and the COI substitution rate converges to about 1.5%
per Myr within the insects (Quek et al. 2004). This rate
has been widely used for age estimation of several taxa
of Lycaenidae (e.g., Als et al. 2004; Lohman et al. 2008),
and also of Crematogaster ants and Coccus scale insects
inhabiting Macaranga (Quek et al. 2004, 2007; Ueda
et al. 2008, 2010). Thus, we used solely the COI diver-
gence rate (uncorrected pairwise distance) to estimate
the lycaenids’ divergence times. First, the heterogeneity
of the substitution rate of COI in the ML topology was
tested by using the likelihood ratio test (LRT) with the
models selected by BIC5, implemented in PAUP. The
LRT results showed significant deviations from rate
constancy (p < 0.05). Second, the range of divergence
times of node A (Fig. 1) was estimated by non-para-
metric rate smoothing (NPRS, Sanderson 1997), imple-
mented in TreeEdit v. 1.0 (Rambaut and Charleston
2002). In NPRS, mean uncorrected pairwise distances
between sister taxa were calculated using MEGA v 2.1
(Kumar et al. 2001), and three well-supported nodes of
varying genetic divergence (nodes A, B, and C;
2.1–5.8%) were chosen as calibration points for esti-
mating the age of node A. The range of divergences was
used for dating divergences in various arthropod groups
(Table 4 in Quek et al. 2004). The age range at node A
was estimated to be 3.87–1.95 Myr, which was chosen as
the calibration time unit range in the Bayesian analysis.
Finally, the lycaenids’ divergence times were estimated
by using a Bayesian approach, as implemented in the
mcmctree program in the PAML v.4.2 package (Yang
2007). A Bayesian global-clock analysis was run using
the HKY + C substitution model, sampling 1 million
generations every two generations, after discarding the
initial 100,000 steps as burn-in.

Results and discussion

Molecular phylogenies of the Arhopala lycaenids feeding
on Macaranga were inferred from a total of 1,998 bp
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from the three genes (mitochondrial COI and nuclear
WG and EF-1a) by ML, MP, and Bayesian analyses.
Monophyly of the amphimuta subgroup and of each
species was recovered in the ML, MP, and Bayesian
topologies (Fig. 1), but the relationships among the
species were not well supported; node B was poorly
supported by MP bootstrapping, and nodes D and E
were poorly supported by both MP bootstrapping and
Bayesian posterior probability analyses (Fig. 1).

The divergence time of the lycaenids was estimated
from the COI molecular clock rate within the insects
(1.5% per Myr; Quek et al. 2004). The minimum esti-
mated age of the amphimuta subgroup that feed on
Macaranga was 2.05 Myr, indicating a Pleistocene

divergence (Table 2; Fig. 1, node C), whereas the mini-
mum age of the Macaranga–Crematogaster association
is 20–16 Myr (Quek et al. 2007) and that of Macaranga–
Coccus is 9–7 Myr (Ueda et al. 2008, 2010). In addition,
the divergence times of the two outgroups, A. pseudo-
centaurus and A. kinabala, were estimated to be 4.77 and
2.79 Myr ago, respectively (Table 2; Fig. 1, nodes A and
B), which are also younger than the tripartite symbiosis
(9–7 Myr). Thus, the lycaenids probably became in-
volved in the Macaranga system after the origin of the
tripartite symbiosis.

The time-calibrated phylogeny also showed that the
species divergence of the Arhopala on Macaranga
(2.05–1.68 Myr ago; Table 2; Fig. 1, nodes C–F)

Fig. 1 ML phylogeny of Arhopala lycaenids feeding on Maca-
ranga estimated from 1,010 bp of mitochondrial DNA sequences
(COI) and 988 bp of nuclear DNA sequences (WG 393 bp and EF-
1a 595 bp). The numbers above the branches indicate the ML
bootstrap support (left of slash) and the Bayesian posterior
probabilities (right of slash); the MP bootstrap support is shown

below each branch. When a node was not recovered in the MP
bootstrap or Bayesian posterior probability analyses, an asterisk is
substituted for the node support values. Branch lengths are
proportional to time inferred by Bayesian inference using the COI
molecular clock and gray bars indicate 95% confidence intervals
(Table 2)
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occurred during the Pleistocene, suggesting that a rapid
radiation of the amphimuta subgroup occurred during
the Pleistocene. Moreover, all Macaranga species and
the mtDNA lineages of the Decacrema ants and Coccus
scales were already in existence in the late Pliocene
(Quek et al. 2007; Ueda et al. 2010), which also indicates
that the species divergence of the lycaenids occurred
after the origin of the tripartite symbiosis. Therefore, the
lycaenids might have diversified to adapt to the pre-
existing plant, ant, and scale insect symbiosis. Given the
younger origin and later diversification of the lycaenids
compared with the origin of the plant, ant, and scale
symbiosis, the association between the Arhopala lycaenids
and theMacaranga tripartite system is not consistent with
the codiversification model of the coevolutionary history
of the Macaranga–Decacrema mutualism but it is con-
sistent with the latecomer model.

To explain the diversification of genus Arhopala, two
hypotheses have been proposed. Corbet (1946) suggested
that vicariance in the Pleistocene accelerated speciation of
the genus Arhopala. The Pleistocene glacial cycles caused
sea levels to fluctuate, with the result that land bridges
between islands and the mainland formed and resub-
merged repeatedly (Medway 1972; Morley 2000). In
contrast, Megens et al. (2004b), who inferred the mini-
mum age of the genus Arhopala to be 11–7 Myr,
hypothesized that large-scale climatic changes in the mid-
Miocene acceleratedArhopala speciation. The South East
Asian forest experienced a gradually cooling climate and
intensified monsoons around 8 Myr ago (Zachos et al.
2001). Our age estimate for when the lycaenids began
feeding on Macaranga suggests that the divergence (Ta-
ble 2; Fig. 1, 2.05–1.68 Myr ago) occurred during the
Pleistocene. Thus, Pleistocene vicariancemay have played
an important role in the diversification of the amphimuta
subgroup, in accordance with Corbet’s (1946) hypothesis.
However, we did not investigate the geographical context
of the lycaenid diversification because the lycaenid sam-
pling locations were insufficiently widespread for phy-
logeographic inferences. Further sampling throughout
the distribution area of myrmecophytic Macaranga
(Sumatra, the Malay Peninsula, and Borneo; Fiala et al.
1999; Davies et al. 2001) would be necessary to clarify the
postglacial biogeography of the lycaenids.

Cool, dry periods during the Pleistocene might have
also helped the ancestor of the amphimuta subgroup to

become established as a parasite on Macaranga by
weakening the ants’ ability to defend the trees. In rare
instances, A. kinabala is known to feed on several species
of Macaranga when the ants’ defense ability is weakened
by natural physical disturbances (Itioka, unpublished
data). In addition, the feeding habit of Arhopala may
have shifted from generalist to specialist. The centaurus
group, a sister clade of amphimuta subgroup, is ex-
tremely polyphagous and feeds on several families of
plants including Euphorbiaceae (Megens et al. 2005). If
so, Decacrema ants, as well as Macaranga trees, may
have played an important role in the origin and diver-
sification of the Arhopala lycaenids. However, we have
not investigated the specificity of the relationship be-
tween Arhopala and Decacrema. Phylogenetic compari-
son of Macaranga, Decacrema, and Arhopala might
reveal whether the plants or the ants induced the ly-
caenid diversification and specialization.

The timeline inferred in this study, which indicates
only the gross pattern of the adaptive radiation and
diversification, is based on all known species of Arhopala
lycaenids that feed on Macaranga. Further sampling
throughout the Asian tropics is likely to reveal more
lycaenid genotypes and result in some change in the
estimated ages. However, our estimated minimum age of
the lycaenids seems reasonable because it is consistent
with the timing of the drastic climate changes caused by
cyclical glaciation (Medway 1972) and the ages of
migration events across the South China Sea in Deca-
crema ants and Coccus scale insects (Quek et al. 2007;
Ueda et al. 2010). In addition, we should consider a
possible deviation from the COI divergence rate of
around 1.5% per Myr because rate constancy has been
rejected. Therefore, we also estimated the age range
using known COI rates (1.3–2.3%; Brower and DeSalle
1998; Quek et al. 2004). Using the range of COI rate, the
minimum age of the amphimuta subgroup ranged from
1.34 to 2.36 Myr ago, which are not older than the
Pleistocene and much younger than the tripartite sym-
biosis. Thus rate deviation may not introduce any sub-
stantial error on our conclusion. It is also plausible that
there may have been extinctions of older taxa feeding on
Macaranga trees, but the hypothesis is, unfortunately,
untestable.

Coevolution between insects and their host plants has
been proposed to be an important factor promoting
global biodiversity, but few studies have demonstrated
the historical process within a community context,
including multipartite plant–insect interactions. Here,
we showed that the Arhopala lycaenids were latecomers
to the evolutionary history of the Macaranga-based
community. The Macaranga community also includes
other insect taxa that have evolved specific interactions,
such as leaf-galling gall midges (Cecidomyiidae) and ant-
predatory mirid bugs (Itino and Itioka 2001). Further
phylogenetic analyses of these multipartite associations
may provide insight into evolutionary dynamics of
plant–insect communities in the South East Asian tro-
pics.

Table 2 Mean age and 95% confidence interval (CI) of nodes in
the Arhopala phylogeny obtained by Bayesian inference, based on
the COI molecular clock (1.5% divergence per million years)

Node Age (Myr)

Mean 95% CI

A 4.77 2.83–7.63
B 2.79 1.98–3.87
C 2.05 1.33–3.01
D 1.92 1.24–2.84
E 1.80 1.15–2.67
F 1.68 1.06–2.52
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